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Abstract

The traditional recurrence for the computation of exponential divided

differences, along with a new method based on the properties of the exponen-

tial function, are studied in detail in this paper. Our results show that it is

possible to combine these two methods to compute exponential divided

differences accurately. A hybrid algorithm is presented for which our error

bound grows quite slowly with the order of the divided difference.
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Introduction

We need accurate divided differences for computing certain functions of

matrices f (A) by means of the Newton interpolating polynomial (cf. section

6):

f (A) = &lff + A'f Jjt(A-mi),
k=1 j=i

where Ak stand for the divided differences of I on the eigenvalues of A. One

can evaluate f (A) by computing first the divided differences and then accu-

mulating the polynomial. The divided differences must be of high relative

accuracy because they are the coefficients of products of matrices which, in

some cases, have very large norm. What makes such accuracy possible is

that the divided differences are not for arbitrary smooth functions f but for

well known analytic functions such as exp. sin and cos. Thus we can exploit

their properties in the computation.

In this paper we restrict our attention to exponential divided

differences. A new technique, namely argument reduction for matrix

exponentials, makes it realistic to consider data sets with imaginary parts

bounded by ir in magnitude. Based on this an algorithm is presented for

which our error bound grows quite slowly with the order of the divided

-difference.

We begin by collecting together a considerable amount of information on

divided differences and we hope that there will be other applications for

accurate divided differences of well known functions.

Cool,
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section 1

1. Basic Notation and Theorems

1.1. Definition of Divided Difference

Following McCurdy [1980]. we will use an uncommon but compact notation

for divided difference. For completeness and simplicity we use the contour

integral representation to define the divided differences. Our attention will

be on the basic properties (1.2.1). (1.2.2) and (1.2.3) given in section 1.2.

Let f be a holomorphic function defined inside and on a simple closed

contour C enclosing the sequence Z=[I,. 2. ... . en,-] of complex numbers.

Z denotes the abscissae (or. for those who do not like Latin. data points or

nodes, or even knots). We use A f to denote the k-th order divided

difference of f on .,+1. ... . ¢ +j. For any integer i > 0 . the k -th order

divided difference AIf on Z is defined (following Gel!fand) to be

Atf = A(-Z)f. ( -I,).( (" 1.1)

The superscript of gf denotes the order and the subscript denotes the

starting point in Z. Reference to the abscissae Z is usually suppressed.

Remark 1. An alternative, and more elementary definition (used in Conte

and de Boor[1980]. cf. p.40) designates At2 as the coefficient of zk in the

unique polynomial of minimal degree which interpolates f at '

Remark 2. Mine-Thomson [1933] writes Ajtf as [.¢,+, ... " suppress-

ing the function while de Boor considers t',¢ .... .+j] as a linear func-

tional whose value on f is written [ t. '+, . , jt]f. Davis (1973] uses

f, E]( .jI' a..... Cga): some others like Atkinson [1978] use
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f[. while Kahan and Farkas [1963] and Cabal [1966] use

Af ( 'a+ .. which suggested the compact notation used here.

"'uch of this introductory section is taken from the thesis of McCurdy[1980].

1.2. Basic Properties of Divided Differences

Let f(k) denote the k-th derivative of f . From basic complex analysis one

can deduce from (1.1.1) that

(1.2.1) Af does not depend on the order of , . in Z,

(1.2.2) if $ +kthen Aif = Alt1  1-,

(1.2.3) if ... .-¢,. then ,f = In particular 9 f =f

Most definitions for divided difference are based on (1.2.1).(1.2.2) and

(1.2.3). Thus our definition agrees with them when the function is holo-

morphic. In this paper f will be holomorphic.

1.3. Integral Representation

Theorem (Hermite-Gennochi).

I W1 Vh-i
f= ff... f .. )kdk.vgL.(1.)

Proof. See Gelfand [1971].

Corollary

IAtf mx i)t (1.3.2)

where is the convex hull of , ... .
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1.4. Mean Value Representation

For real abscissae, (1.3.1) implies that there exists some riUe such that

f = -- (t)((7).4.))

One might hope to generalize this representation for complex abscissae by

requiring 7 to lie in the convex hull of the abscissae, but this will not suffice.

as is easily seen by the following example:

Example . C1=1, z=2. f(-)-exp(2.rn).

Alf -1 = 0 f (77) (1.4.2)

for any finite 77.

In the above example, if we require both abscissae to lie in f's fund-

mental dorin Re(-) 1 ) (note that f (('+n)=f (C) for any integer

n), then the best we can have is that there is some 77 close to their convex

hull for which (1.4.1) holds. The next example illustrates this property.

Ezample .'1. -2 =-t. t is a small non-zero real number,

itf =- =Z- $ f ( 77)  (L.4.3)

for any real 77.

1.5. Matrix Representation

The traditional way of computing A 4f uses the divided difference table. Each

divided difference is computed from its two immediate neighbors in the

column to its left (use (1.2.3) for coincident abscissae and (1.2.2) for the

rest).
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6. f(¢)

Alf2

For our purposes it is more helpful to arrange the table as an upper triangu-

lar matrix, for example

f( ,) Alf • -f

f (¢2) A~t-' 2f
*f =. . (1.5.1)

f(,

The symbol Af =A(Z)f, without the superscript and subscript, is used here

to represent a matrix, not a scalar. Let Z. be the special mxn bidiagonal

mitrix associated with the ordered set 7,

2 1

Z..

Theorem (Opitz) The divided difference table is a matrix function

Af =f(Z.). (1..3)

Proof. See McCurdy [1980] or Opitz [1964].

Remark. Opitz [1964] first obtained the result but his paper is little known in
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the U.S.A. and is in German. McCurdy rediscovered it in 1979 when working

on his thesis.

1.6. Our Objective

Given any . , ], can we compute Aexp for k=O,1 ... , -1 with

guaranteed high relative accuracy? Using the matrix representation, it is

equivalent to aik " Can we compute the first row of Aexp. or exp(Z,) , accu-

rately ? " The answer is affirmative if the abscissae are close to the real line.

In the next. two sections. we discuss some basic and hybrid methods for

computing Aexp. In section 4 we give the results of McCurdy [1980] for real

abscissae Z. which show that one can compute Aexp accurately in all cir-

cumstances. We turn to the complex case in section 5 and show that in cer-

tain cases the .roblem is "difficult" (to be precise, certain sets Z give unex-

pectedly small vralues for 9. exp, and we call them "difflicult'). For difficult Z.

we cannot expect high relative accuracy, the situation is like approximating

zero by some non-zero number. Finally in section 8, we discuss the applica-

tion of the divided diff.rences to matrix exponentials.
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2. Basic Methods for Computing Exponential Divided

Differences

2.1. Standard Recurrence

When all <s in Z are distinct, we can use the well known recurrence scheme

(1.2.2) to compute the divided differences table Af: Af for i>O. k_:O and

k 44i5n.
I.'

SR (Standard Recurrence scheme)t.

for each k=1,2.....n and i=.2 ... n-c, where 9--f V(,).- u

SR is probably the simplest algorithm. It takes only 7 3/ 2 + O(n) arith-

metic operations to fill up the whole of Af when all data in Z are distinct.

However. when some f (*) are close together and given to limited p-ecision,

it may produce enormous relative error. For example, consider the exponen-

tial function on data [1.1.0001]. Assume function values given to 8 decimal

digits, then

_exp= 2-7185538- 2.7182818 = 2.7200000 (Ans. 2.71841777...).1.0001 - 1

Your digits have been lost during the subtraction (which is performed

exactly!). Notice that the loss doesn't depend on the number of digits carried

by the function values. The first four digits of the function values agree.

therefore four digits will be lost no matter how many digits are given. Since

the higher order difference of exp behave like exp (because the derivative of

T Parlett's Recurrence for computing f(Z.) (Parlett[1976]) is identical to the standard
fterative scheme for computing Aj'. The technique is based on the commutativity of Z, and
f (Z,): 2,.I(f.)-(z,).Z,. cf. Parlett[ 1976].

- . .
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exp is exp), we would expect Alnexp to lose 4n digits if the data are as close

together as in the example. Consequently when only 12 or 16 decimals are

available it is quite possible to lose them all for higher divided differences!

If the tabular values are the only data then there is no simple escape

from this loss of information. That is why divided differences have a bad

name in practice. However in a number of applications the functional form

of f is known (e.g. exp) and can be exploited to obtain accurate values in

this situation. This is the essential point of our paper.

We shall suppress the reference to exp or Z in the exponential divided

differences when it can be done without amb.guity. Thus A A k(Z) and bexp

may all mean A 4(Z)exp.

2.2. Special Formula for The First Divided Difference.

If the sine function for complex arguments is available and fully accurate

then we have a reliable formula for the frst divided difference. Let

€2('.+.)l 2 and p-( j+'I- j) 2, then

eC44.1 - = -- -  , sinh(Y/) sin(ii)tat a 0 L '  e . = e . .

IfP =O, we set A& = ec.

Function FDD(x.y) (FRrst Divided Difference).
Given complex data z.y, FDD wiUl return the value of A,([z ]).

1. eo=(y/+z)/2 (or w=z+(V -x)/2 when : and y/ are close together).
2. #, = -'
3. if V=0 then FDD=ez .

4. if i0#O then FDD=e.sin(i7)(iY-').
5. Return..

I -- .77
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We will use that function freely in tht rest of this paper for our algo-

rithms because FORTRAN library functions have improved greatly since 1970

in most mainframe computers.

2.3. Taylor Series

Another simple way to compute A is by its Taylor series

A = Aexp = e =

Because of the special structure of Z,. there is an extremely elegant algo-

rithm for the first row of the matrix A. Explanation is given in Appendix A.

This approach does not apply when f is known only by its values on Z. It

Algorithm TS (Taylor Series).
Given Z as in section 2.1. this algorithm computes [d(1),d(2) .... d(n)]:=

[A~..A - '] by Taylor series. In what follow, k indicates the current loop
number, and s(i) stores the (1,i)-th element of matrix (Z)4+i-1/ (k +i -1)!

TS1. [Initialize.] Set d(i)=s (i)=l/ (i-)! for i=1,2,....n.

TS2. [Lcop.] For k=1.2.... until convergence do

TS2.1 I )-,sll
TSa-2 For-i=2,3....,n do

d 7)--di)+s6().

TS3. Set d(l)= exp( ,) and the algorithm terminates.•

Algorithm TS computes only the first row of A. If one wants the whole

divided differences table, one has to use the following TS(II). which essen-

tially computes the whole A by repeating TS on the submatrices in Z,.
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Algorithm TS(II) (Taylor Series algorithm (1)).
Given Z and a matr~x array F. this algorithm computes F=A~ by Taylor

series. In what follow, k indicates the current loop number. and F(L.rn).
,.>m. stores the (i~m.)-th element of matrix MZ)" -+i-M)!

TS(ll) 1. [Initialize.] Set F(i.rn.)=F(m.i)= 1/ (i -mn)! for 1:5~i:n

TS(II)2. [Loop.] For k=1.2.... until convergence do

TS(Il)2.1 For m.=1..2.....n-l do

for i=mYL+1.....n do

TS(II)3. For m =1,2.....it set F(m.m)= exp(? m) and restore zero to the lower
parts off. ie., F(i.m) ,-0 for O<mn <i. and the algorithm termninates.-

Accuracy. TS method is fast and accurate only when all are close to zero.

Let 7=maxi d' and call it the "radius" of Z. Numerical examples show that
Ce~z

when the radius is bigger than 2 or 3. TS may not be reliable. The situation is

like computing e--' by its Taylor series. Le., by 1-,+ 2-+.... In finite preci-

sion arithmetic . when y is large, then e - 7 is small and the roundoff error

from the intermediate term 2 (which is large) could impair the accucacy
A:!

of the series. If one wants the roundoff of the intermediate terms to have no

serious effect on e - 7 ; say, confined to the last binary digit of - 7; then 7 must

be small enough so that e- 7 2.max(2L), which implies 7:51n2 0.7. It

seems reasonable to require 7<0.7 if one wants TS to yield accurate answers.

Criterion. Use TS when -7 is less than 0.7.

This criterion will be used throughout our paper, for we need TS to yield

accurate answers in the Scaling and Squaring method in section 2.4. One may

relax the constant 0.7 a little bit but we will stick on this value. Our examples
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(cf. Table 2.3.3) show that the error grows rapidly with y and it becomes

unbearable when 7 is bigger than 2 or 3.

Remark. The number of terms I needed in the series depends on the radius

7 and the machine precision e. In appendix A we show that in the presence of

roundoff it is sufficient to chose I such that

•=9+1 P (2.3.1)

For example, if 7=0.7. then for c=2-
2 4. 1=9 and for e=2 - 18 , 1 -16.

Operation count and storage. The operation count is 21n for TS and In 2 for

TS(II). where 1 is the number of terms needed. Two working n-vectors are

required for storing d and s in TS while a whole matrix is needed in TS(II).

Numerical example. Let u = cos(0.1) + isin(0.1). We ran on a Vax 11/780t

TS using single precision (&=2 - 2) on the set

with different values of 7 and n. where n is the number of points in Z. Here

-/ is also the radius of the data because Iu =1. Our results are summarized

in the following table. Each entry in Table (2.3.3) is the maximum magnitude

of the relative errors in A(Z) as a multiple of c**. Note the rapid growth of

the error as y increase.

t Vaz is a trademark of the Digital Equipment Corp..

'To be precise, if Z has n points, then the first I n.+ are -Yu and the other are 7U.
SThus the number 8240 corresponding to -29 and 7=5.2 means that the maninumrelative

error In A1(Z) i 8240c.
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n=5 n=11 n=17 n=23 n =29
-y=0.7 1.3 2.3 L9 4.0 2.7
7=1.2 1.9 4.9 8.8 8.8 8.8
-y=1.7 3.8 7.9 14.5 10.6 30.7
7=2.2 38.7 38.7 38.7 38.7 38.7
7=2.7 39.0 59.7 122.0 122.0 122.0
7=3.2 28.7 98.1 133.0 159.0 159.0
-y=3.7 291.0 321.0 321.0 484.0 484.0
7=4.2 704.0 1820.0 1820.0 1970.0 1970.0
-- 4.7 2250.0 2250.0 2300.0 2300.0 2980.0
,75.2 2980.0 5530.0 8240.0 8240.0 - 8240.0

Table (2.3.3). Max relative error coefficient
in Z (cf. 2.3.2) with different n and 7.

2.4. Scaling and Squaring

2.4.1. SS (Scaling and Squaring) met~iod

When the abscissae are not close enough for TS. we can shift and scale down

the size of Z, by. for example, settirg

where k and 77 are chosen so that Y. has small diagonal elements. Since exp

has the following properties

!i (0) exp(A+xr)=e2exp(A)

(ii) exp(--A)Zi=exp(A).

we can recover exp(Z4) from F=exp(Y) by exp(Z.) = e".[exp(Y)]2. The

matrbc power Feb can be computed by repeated squaring of F (i.e. F .- Fe ) k

times.

Four mdor steps for SS.

step 1. Determine it and k so that Y=(Zn -ql)/ 2k has radius !90.7A
t We uJm1y use the arithmetic means of the data as the shifting.

$ The number 0.7 comes from the criterion in section 2.3. It is proved to be almost the best
for SS in McCurdy[ 1980] when z is real.
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step 2. Compute F=exp(Y) by Taylor series.

step 3. (F 4- F4) k times.

step 4. Shift back F: F ,- e".F.

The squaring in step 3 normally requires kn 3/ 6 + n&/2 + n/ 3 operations (F

is triangular) and a matrix storage for F; this is quite expensive when n is

large. However, there is an alternative method which requires only

knz + 0(1) operations: with some modification of steps 2 and 3, one can

replace every "intermediate" F by some divided differences table ( notice

that in step 2

2-k €, 2-k

2 -k

and does not generate a divided differences table). Consequently with the

backfilling technique in §2.4.2. one can generate the whole matrix F from its

first row and therefore only the first row is needed in the squaring, thus

reducing the operations and storage required. This method does sacrifice

some accuracy, however. Before presenting the algorithms (in § 2.4.4). we

describe the backfilling technique and discuss a subtle modification of steps

2 and 3. In general we cannot avoid using a 2-dimensioned array to form Fe

unless F has some special structure.

2.4.2. Back filling the divided difference table

Consider again the divided difference table Af
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f( 2) '~ A-2f

Af-

Algorithm SR shows that Af can be generated from its diagonal elements.

However. it is also true that Af can be generated from its fIrst row by the

formula (2.1.2): given jA .. ,-t

= -~ 1 )Aj'j~f+ AkI- 1f (2.4,.a1)
for i-,3.....n& and k=0,1,2..... -i.

The only worry in using formula (2.4.2.1) is the propagation of the error

in Af, which may be serious, especially when the is are far apart. When

f =exp and Z is real and in natural order ( j,<j for , <j) . (2.4.2.1) is reliable

because all A!exp and (s' - _)are positive, and summing positive

numbers is quite stable. Thus bad situations occur only when Z has large

variation in the imaginary parts. In this case the backfilling step frequently

exhibits instability. The following is a typical example.

Numerical example. Let Z=[-24i.-21i,-18i ... 18.,21i.24i]. We compute

the last column of A(M: A: - t for k = 1.2.... 18 by backfiling and compare it

with the correct answer. The last column of the table denotes the magnitude

of the relative errors in the corresponding divided difference AI - A.

• - • ,
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Correct values Backfilhng rel. error
to six digits Backfilling__e_._error

1 (.699024e-16.00000e+O0) (.699024e-16 .O00000e+00) .21e-07
2 118971e-15 . 16776e-14) (. 18971e-15 .167768e-14) .Ile-07
3 -.375574e-13 .535368e-14) (-.375574e-13 .535363e-14) .21e-07
4 1-.68358e-12 -.780734e-12) 1-. 19358e-12 -.780734e-12) .15e-0
5 (149915e-10 -.436262e-11) .149915e-10 -.436262e-11) .52e-06

6 (.97S633e-10 .28 Be-09) (,.976634e-10 .264279e-09) .20e-05
7 (-.424631e-08 .192067e-0) -.424635e-0B . 19206se-08) .72e-05

-.3320e-7 .616516e-07) 1.370-7-.616534e-07) .26e-04
9 .800392e-06 -.508937e-06) .800473e-06 -.508930e-06) .86e-04

10 (.678838e-05 .917160e-05) (.678798e-05 .917475e-05) .28e-03

11 (-.912472e-04 .781070e-04 (-.913509e-04 .760928e-04 .87e-03
12 (-.761200e-03 -.771374e-03) (-.760814e-03 -.774224e-03) .27e-02
13 (.538045e-02 -.611926e-02) (.544411e-02 -.611179e-02) .79e-02
14 (.390049e-01 .296790e-01) (.369112e-01 .307910e-01) .23e-01
15 (-.121109 .164993 ) (-.135378 .184486 .65e-01
16 (-.580745 -.323969 ) (-.584346 -.443728 .18

Table (2.4.2.2): Backfilling yields enormous error for Z with
a large variation in the imaginary parts.

2.4.3. Modification of step 2 and step 3

We may assume the data have been shifted, say. to have mean 0. For 0-igk.

define the bidiagonal, matrix Z,() to be

2-% 1

2-4 2-2 1

Also let the diagonal matrix R be

2

2"-I
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Our objective here is to replace every intermediate "F" in step 2 and 3 by

exp(Zn(0), so that we can apply the backfilling technique and avoid the

storage for a whole matrix.

Modified step 2. Compute F0 = exp(Z0k)) by TS.

Modifed step 3. Compute F = RFR - 1 for 1,2,...,.k.

ljejnma. F = exp(ZPbI)) for O ik, in particular, F = exp(Zj0 ) = exp(Z,).

Proof. Assume ., = exp(Z4 1)) for some L*0, then

=,+1 RF'R-' = R[exp(ZN))])R'
- A'.eX(2?, k-t)).R-1

= exp(2RZ, b-')R-).

From the definition, it may be varidfed that ZU') = 2RZ4+I)R- 1 for j.-O.

Hence, F+1 =-exp(Z4-I-)). The le:-na holds when L =0. By induction, we

have F4 = exp(ZJ-')) for i:0.•

Since every intermediate "F' is of form exp(Zl)), each of them is a

divided difference table (with different scaled abscissae). By the previous

section. F can be gensraLed from its first row. Hence it is possible to do the

squaring (for the first row) without keeping the whole matrix.

2.4.4. Algorithm for S

Algorithm .(Scaling and Squaring)
Given Z as in section 2.2. this algorithm computes [d(1).....d(i)]:=

[As ...... A -1] by scaling and squaring. In what follow, vector s stores the
current column of F and vector r stores the first row of the current F.

SSI. [n=l?] If n=1, return d(1)=e&' and the algorithm terminates.

SS2. [Shifting.] Set i=('E)/n and replace by j-n.
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SS3. [Scaling.] Determine the least integer k O such that 2-maxj j I -0.7.
then replace j by 2-k for all i.

SS4. [TS.] Call TS with Z equal to the current j's, result goes to d.

SS5. [Squaring.] For kk =1.2,....k do
SS5.1. Set s(1)=d(1). for i =2.3.....n do

SS5. 1.1 [Back fill the i-th column of F in s.]
=s(1)

s(1)=dC(i)
For j=2....i-1 do

Y=s(j)
S-()z=+(i - -O,)s0 -1)
X"z
next jSWi)exp(¢,).

SS5.1.2 [form the (1ii)-th of RFeR-1.]

r )=2-€,-1) t d(j)s (j).
J=1

SS5.2. [Update d and 's.j
d (i)-r(i) for -=2,.....
tj -2t, for i=1.,..... n,
d(l) =exp( ,).

SS6. [Backfill the last column of F.] Set .(1)=d(1), for i=2,3,...,n do
X =s(1)
s(1)=d(i)
For j=2.....-1 do11=t, (j)

z=Y
next j

next i

SS7. (Shift back and stop.]
,-tt+77. d(i).-e"d(i), s(i-1)'e~ s(i-i) for i=2.....n.

set d(1)=exp(C1 ) and s(n)=exp(tn) and the algorithm ter-
minates.

Remark.

(1) If the function FDD (cf. §2.2) for the first divided difference is available,

one can improve the accuracy of SS by using FDD whenever the first

divided difference is wanted.
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(2) SS6 is necessary for the Simple Hybrid Algorithm in the next section.

otherwise it is not needed.

The backfilling step may not alway be stable. When Z has a large varia-

tion in the imaginary parts it is likely that the formula (Z-4.2.1) may fail to

yield reliable answers. In that case, the straightforward squaring is needed.

For completeness and for reference, we also lay out the algori-:hmr below.

Algorithm SS(U). (Scaling and Squaring algorithm (H))
Given Z and matrix F. this algorithm computes F = A by scaling and

squaring. For the R in step 5.1. cf. section 2.4.3.

SS(11)1. [n=1?] If n=1, return F(1.1)=ef 1 and the algorithm terminates.

SS(II)2. [Shifting.] Set -(Z¢,)/n and replace Z by Z--T.

SS(II)3. [Scaling.] Determine the least integer k !D such that
2-)rmaxJ J <O.7. then replace Z by 2-*Z.

SS(II)4. [TS(II).] Call TS(U1) with data Z. result goes to F.

SS(Il)5. [Squaring.] For k =1.2.....k do
SS(])5. 1. [Update F.] F=R.FPe.R-1 .
SS 11)3.2. [Update 's.] Z-2.Z.
SS(II)5.3. [Update F(i.i).] F(i.i)=exp( j) for a.=1.2.....n.

SS(II)6. [Shift back and stop.] Z-Z+.. F4-e'-F and the algorithm ter-
minates. m

Operation count and storage. The major part of this computation is the

squaring step, which is repeated k times. The operation count for each

squaring is n2+O(1) in SS5 and n3/6 / 2 + O(n) in SS(11)5 (with n func-

tion call on. exp). Hence the total operations need are 'd2 in SS and

ftkns/ 6 in SS(Il), where k is the least non-negative integer such that
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2-ky ° : 0.7. Therefore when 7>0.7. k=[logz(y/ 0.7)+I]t Iog27.+1.5. Four n-

vectors are needed for storing d.s.r and Z in SS and a matrix storage is

needed in SS(II).

Accuracy. SS may be viewed as an extension of TS (Taylor Series). It can

accept moderately spread data without suffering as much as TS (cf. §4.3).

The follow example illustrates the big difference between TS and SS.

Numerical example. Let Z=[-16-12,-8,-4,0,48.12,16]. We compare TS and

SS in the computation of AN(Z) for k =1,2.....8. Results are summarized in

the following table. The values in the last two columns are the magnitude of

the relative error in the correspond divided differences ; notice the enor-

mous error in the first few Ak(Z) for TS.

correct values TS SS relative relative
to 6 digits op: 645 (+ or *) op: 1018 error(SS) error(TS)

.150792e-05 .281912e-01 .150792e-05 .12e-06 .4
D .101027e-04 .281155e-03 .101027e-04 .20e-06 .83
A? .451239e-04 .242131e-03 .451239e-04 .36e-06 .37
A .151160e-03 .154376e-03 .15116Ce-03 .60e-06 .?1e-01

A .405094e-03 .405302e-03 .405095e-03 .88e-06 .51e-03
A 904679e-03 .904669e-03 .904680e-03 .12e-05 .e-04
A 173175e-02 .173175e-02 .173176e-02 .14e-05 .48e-05

.A .290059e-02 .290059e-02 .290059e-02 .17e-05 .73e-06

Table (2.4.4.1): Divided differences on Z, TS vs SS.

Here v*(Z)uryzaij -(Q.4)/n 1 is the "radius" of 7 (after it has been shifted)
t Here [x] denotes the greatest Integer that less than x.
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3. Hybrid Methods

31. Example

Our discussion so far suggests that it may be possible to compute A accu-

rately by combining the two methods (SR and SS) of section 2. Let us con-

sider the following task.

"Given Z=[50i. 10-5+50i, -10- 5 -50i. -50i]. compute A=Aexp."

In addition to SR and SS. we can compute A by the following "mixed" method.

Decompose A into a 2x2 block matrix and name the blocks I. I and III.

AAA= = rr

Since C, and C2 are close together ( also C3 and ) SS is right for them and

we use SS to compute I and IL Then we use SR to fill up Ill.

In order to compare this mixed approach with SS and SR. we ran these

three algorithms in 24-binary digit (-7 decimal) arithmetic. The results are

summarized in the following table. For simplicity we only compare A2 and

A3. The symbol IA in the last column stands for multiplication or division;

thus S/A. 4exp means six multiplication/divisions and four calls to exp are

needed.

Method A2 A Or.count
SR (-.282260.-02 -.97.43e-02) (-.193573e-03 -. 58794e-10) 6j...4exp
SS (-.262376e-02 -.970219e-02) (-. 194077e-03 -.295204e-07) 196/,10exp

Mixed(-.282376-02 -.970218e-02) (-.194043e-03 .207219e-C9) 2 6 A.1Oexp
Exact (-.262376d-02 -.970218d-02) (-. 194043d-C3 .204162d-09)

The following should be noticed:

(1). SR gives poor results on A2 and A3.
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(2). The answers of SS are not bad. This shows that SS can indeed accept

moderately spread data, but the price is high.

(3). The mixed method gives the most accurate answer.

3.2. Simple Hybrid Method

The example in §3.1 shows that when one can group the data into clusters

(allow overlap)

z = [f . '2 . . *. ..k .. L4L+,. . .. . ,]'

then one can compute A(Z) by

SR

Fig. 3.2. 1

This clustering should satisfy

(1) within each diagonal block of Z, the data are close enough together so

that SS may be used for the corresponding block in A.

(2) data belong to different blocks should be sufficiently separated so that

SR can be used to fill up the rest of A.

This mixed approach, which we call the simple hybrid method (S).

demands a suitable ordering on the data Z. Such an ordering brings

together all close abscissae and we may call it a nested ordering (to be
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defined precisely in §3.3). Under a nested ordering, the radiust of each

.+...... ]is close to the distance between the end points. In other

words, if and j+A are close together, then all *. ..... are close

together. In that case, we can group the abscissae as follow : the data

. . Ci+k will be in the same cluster if I€+- j 1 less than some value

g. This g depends on k (the number of points in the data set) only and we will

discuss the value of g =gt for each k in §4.4. For the time being, assume gt is

given, we are ready to describe the simple hybrid method.

Method SH.

[1]. Determine the clustering.

[2]. Compute the clustered block (shaded area of Figure 3.2.1) by SS. Notice

that we only need SS to return the first row and the last column of eac.a

block.

[3]. Fill up the rest to the first row by SR.

In practice, [i], r2] and [3] are alwayi combined for each cluster. Here

is an implementation.

Algorithm SH (Simple Hybrid Algorithm).
Given Z and the decision function G, this algorithm computes

[d(i) ..... d(z)] := [AA. ..... , An-'] by the simple hybrid method. In what fol-
low, vector s will store the last column of the current cluster, vector d will
store the first row of the current cluster, /i will be the currently computed
row number (of A) and v, j will be the first and last index of the next cluster.

SH1.[n=I?] If yes, set d(1)=exp( ,) and the algorithm terminates.

SH2.[Initialize.] Set j=minji: v ,- I and compute the A-th row of A
by calling SS, result goes in d(A ),...,d(n). Set j=n

t The radius of Z is defined to be "(Z)- max 1€-,qI where ,)=(Z¢i)/n.
l'Ct4?

P -
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SI-,.rU= 1?] If yes, the algorithm terminates.

S114. [Loop.]

SH4. 1.[Find the next cluster.] Find cluster [vj]. v-j. ].
(a). j=j-1
(b). v=minli: I ¢-j 1 gj - with i<jl
(c). if p.uv then go back to (a) else SH4.2.

SH4.2.[Update d from v to j]

SH4.2.1.[call SS on .
Results go tod()..) and s(1),....s(j-v+I)
s is the last column of the cluster.

SH4.2.2.[Fill up d(j+l) .d(n) by SR_]
For k =, -, J.-v-1. 1 do

c(j)=s(ic)
for i=+l,j+2. n do

d ei) =[d ()-d (i -1)1/[¢, - ,k _1]
next i

next kI

SH5. [Update u.] Set A=v and j =j -1. Go back to SH3.•

Operation count and storage. The total number of operations depends on

the clustering. The worst case might take 0(n 3 ) but it would be very rare.

e.g., if Z=[1,2.3,....2n] a-adg-=n for anyj. then there will be exactly n clus-

ters and each cluster has n data points, which means n -O(n 2 ) = O(n 3)

operations are needed (cf. the figure below).

4i

Such a situation is very unlikely to happen for a realistic set of gk= k1.2.....

For our decision constants (will be discussed later). the operation count is

usually O(n 2 ). Storage requirements will be Ihe same as SS.
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3.3. Ordering problem

When Z is not nested, one may not be able to group the data to have proper-

ties (1) and (2) in §3.2. In that case, a much more sophisticated combination

of SS and SR, a recursive hy/brid method . may be needed. Let us consider a

different example Z=[-50, 50. 50, -50]. Since the first and the last elements

are equal, we cannot use SR for A3 and hence the whole of Z should be

treated as one block. But then SS is not that suitable because the radius of

Z is large. However. instead cf the whole Z we consider the subset [-50. 50.

50] (which can be grouped into two clusters) and obtain the first three

divided differences 44,4. As for the last one, we make use of the fact that

it does not depend on the ordering of Z. and thus compute A? by considering

the reordered data set [-50. -50, 50, 50]. Notice that both [-50,50.50] and

[-50,-50,50,50] can be clustered for SH.

The disadvantage of -he above method is that in some sense the first

three divided differences have been computed twice. Had we known in

acdLvance that the reordering would be necessary we could have avoided the

repetition ; for in our aptication the abscissae can be arrar ged in any

order to give a Z but then it is A(Z) which must be computed. It thus raises

the question:

Does there exist a nested ordering for any given Z ?

The answer is yes when Z is real (the natural increasing ordering) but not

always in general, e.g. consider data that form a circle in the complex plane.
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S x

Ix
X

Xx

Before we discuss the details of the recursive hybrid methods, we men-

tion the decision function G and the decision constants 7j'. k = 1.2 ...... Given

any abscissae WY with k points, G(W) yields a pair of points (i,.cj), ca.fWjc

such that I w -c j I is an approximation of the radius of IV. As in §3.2, the deci-

sion whether we should apply SS on the whole of W becomes the test

Jwj-cwjj :g,:. where gk depends on/k. Examples for C(W)(c.), ,

are

(3.3.1) Iw,,-w,I=dia(W,).
(3.3.2) Re(w,,-c,,) =,d,'m(Re(WV)).

(3.3.3) A jutcoI-- c f. E- W:Ke(t) =maxRe(jj) .

We will discuss G in section 4 and 5. Now assume that G is given and use it to

define a nested ordering:

Definition 3.3.4. Z is nested (with respect to G) if

. .... )=(<t.) for any 1!L.1k.i+k!5..

It is easy to verify that if G is one of (3.3.1 - 3). and if Z is real, then an

arrangement of ¢( in increasing order gives a nested ordering.
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3.4. Recursive Hybrid Method

Every divided difference can be computed by . = RH([, where

the function RH is defined below.

Recursive Function RH (Z).
This function computes the highest order divided difference on the given

data Z. Let k denote the number of points in Z. then RH return Ilk-(Z)exp.

[1]. If k=l return (exp( ,)).
2 Compute G(Z)( C).
3 If g g call SS and return (d(k)) else return the following

RH(Z()) - RH(Zj)) (3.4.1)

where Z(i)-[,1 .. .

We leave the details of the proof that RH does ret-rn the highest divided

difference to the reader. Notice that when Z is nested.

... '¢ ..... )(¢ i) and the above decision i:step [3]) means that

- .... should be computed by SS if t-gk. which is exactly

what SH did. Thus

-RH reduces to SH if the abscissae are nested.

Since the opera-don count of RH could be enormous, like O(L.J). one

would hope to find a nested ordering for the <'s to determine Z and then

apply SH on it. A practical modification is to attempt to nest the abscissae

(according to G) before steps [2] and [3]. If it can be done. then SH can be

applied to the rearranged Z (recall that the divided difference does not

depend on the ordering of the data). Later on we'll see that the abscissae

can always be taken close to real (cf. §5.3) and consequently ordering

according to the real part give an almost nested ordering, see §5.4.

Our purpose in introducing RIH is to show that. in principle, A(Z)exp

can be computed accurately using fixed precision arithmetic.
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4. Real Exponential Divided Differences

Exponential divided differences for real abscissae are positive and increasing

functions of their abscissae. These properties permit derivation of bounds on

the error growth in SR (Standard Recurrence) and SS (Scaling and Squaring).

For future use, we consider the more general function exp, with scaling

parameter T. that is expr(e) l e'r. For simplicity we write

exp$")(t)= -%(exp.,)(t). In the rest of this section, we consider exclusively

divided differences on real abscissae X=[ . 2... ,C , even if some of the pro-

perties hold for general complex abscissae.

4.1. Basic theorems and properties

Translation and scaling invariance property. Let U be the constant vector

[II,...,i]. Then for any constants r,..

Aln-'(X+a U)exp,=e*.A'-'(X)exp,(4.)

and

Lnr-,(X)evp T-Al-,(TX)e-p 412

Proof. (4.1.1) follows easily from the matrix equation exp(A+a)=eO=.exp(A)

(using (1.5.3)), and (4.1.2) follows from (1.3.1) directly.

Recursive integral formula. For given X and any i-O, i=1.2 .n. we have

eexp. = e - fexpda, (4.1.3)

where

rTf- A -neXgl r sxct)=X stt (4.3.4)

Proof. From the Hermite-Cennochi integral representation formula (1.3.1),
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we have

I I un-

Ar-lexp, ff... f ex --),( -€)a , ... )i,) .,]d a'v
00 0

0 0 0 Ii
by the definition of exp, The change of variables cj=rvi for j=1.2,...n-1

yields the alternative expression

t. I a -4~(,4.1.5)

We recognize that this is a recurrence for An-lexp, namely

.A,-XPT~e f . 2eXpqdO

where awal. By the symmetry property (1.2. 1). the ordering of the abscissae

is arbitrary; we may replace by any ti, Igisn, hence establishing the for-

mula.

Theorem 1. For all ,r>O and k;O. A-exp. is

(i) positive.

(ii) strictly increasing in each abscissa . for i =I...n.

Proof. (i) folows from the mean value representation (1.4.1). For (ii).

-- ,8-'xp,:?(7-q), An') f /expda a > 0.

ft 0

since the integrand is positive.

Theorem Z Suppose istig for each abscissa , Then for each i

there exists a Cc(P,7] such that

Ai'a-Ixp.=(q-_( + n (4.1.6)
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Proof. By (4. 1.1) and (4.1.2),

7-(?lT-(U)fep = T-(n-iL)e-rf.Sn-(X)exp,

.r-(nt-0eT(f-() e-0(,.Ar-=2(X)expqd

for any i= 1,2,...,n and t. Differentiating with respect to - yields

dr-Ar-((X-fU))exp = .-(1-t)u-"L(f--- 'a-(x)ep 1. A~~(X)expJ. (4.1.7)

Every element of the vector X-PU is non-negative, and so A-t(T(X-iU))exp

is increasing in -r. Similarly, every element of X-yU is non-positive and

An -i(T(X-U))exp is decreasing in T-. Hence

1: in-1 (Tr(X-#U))exp L:- 0) -9Ajn1(r(X-yU))exp
ciT cir

so for some E [p,7]. the derivative is zero. The result then follows from

(4.1.7).•

Corollary 1: Lower bound on An-lexp, If ( for each i =1,2,...,n, t..en

Ar-1 exp, ' (4.1.8)

Proof. Choose i=n. y=f, in (4.1.6). and note that - 0.•

Corollary 2 Upper bound on An-texp. If C, 5 for each i=1.2.....n, then

&n-lexpT. n- 2 exp,.- (4.1.9)

4.2. Error growth in Standard Recurrence

We now examine the error growth of one step SR when X is in increasing

order. 'Equation (4.1.8) leads directly to a bound on the relative error growth

i. .
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in one step of SR. Let rk be the relative error in A=texp. L.e..

fL(W)=(+Az)., where f1(A) is computed by SR. For simplicity let us first

assume that the recurrence step (2.1.1) is done exactly, in which case r

may be regarded as the 'iiterited uncertaihty of A -. We have

(1+e+;1).j'-(,

After some algebraic manipulation, one obtains

If (W)-1'I K 2 At.max I rIIclI1

By (4.1.8), since . tj for .:gjL+3& k,

L_ :5[_+,_ 2k ]'maxI 4MI Iel"Ii.

Therefore. we have

Uncertainty growtht of one step of SR (with X in increasing order)

+ _2k ]'m axj I C,1-1 I. l -, I (4.2.1)

This bound is quite realistic. Take the example in §2.1: Z=[i. 1.0001]. Both

Ac=e I and Aj=e L.0c0 can be computed accurately -with I .v1.1 ,I I J , so equa-

tion (4.2.1) predicts jell:20001. In §2.1, with r=5-10- 0, we have

a (2.72-2.7184...)/(2.718...) f 0.000582 u 11641c.

In finite arithmetic, the execution of SR may introduce some roundoff

error to A:. An error analysis in appendc B shows that only a small

modification of (4.2.1) is needed to incorporate the effects of roundoff into

the propagation of uncertainty.

?Nh is the growth of the uncertainties in the data. As long as there are uncertaities in the
input, SR will propagate them even if the arithmetic of each step is done exactly.
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Error growth of one step of SR. Provided that t k-' and rk- I are smallt,

we have

II 4v + 1 + 2 aX _ 1 *I(422

Proof. See appendix B.

4.3. Error bounds on SS

Based on the positivity of Ak (Theorem 1 in 4.1). we can apply standard error

analysis to obtain relative error bounds on SS. For example, in the squaring

step, each entry of the matrix is positive and therefore no cancellation

occurs and we have

I fI (B2) - B21 f. n.( s

where I El denotes the matrix all of whose elements are the absolute values

of the elements of E and our notation A:B means that aj-bjj for every i

and .

A detailed error analysis of Algorithm SS(II) is presented in appendix B.

As a direct corollary of equation (B.6), we have the following bound:

Scaling and squaring error bounds. Given real abscissae X in increasing

order, denote the relative error of Aj(X) by 4j as in the previous section. and

recall yomaxi tj--q I where 7 is the arithmetic mean of t. For convenience

set Y-mnax(yO.7). We have

jil(Co+Clkln'+C 2 '-2).c . (4.3.1)

t See appendix B for details. In genera], it su. ices to require them less than

4 e /-t "
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where C0 =13.63 and CI=1.4427. C2 depends on r; in particular C2=134.4

when C=2 -2 4 , and C.=215.426 when r=2 -18.

Proof. See appendix B.u

Remark. The bound on e# is quite pessimistic. Numerical results show that

most of the time the constants q should be reduced to 0.01 times their

values given above (cf. the remark in appendix B)).

4.4. Decision criteria for the hybrid methods.

Using the bounds in the previous section we demonstrate that one can deter-

mine G and gi so that the recursive function RH (for the highest divided

difference) always yields a result with bounded error. For convenience, we

write X(n)rX to indicate that X has n abscissae. The function RH(X(")) is:

(1). RH(X ())=ep(4,).

(2). Compute G(X("))=(%,.f,). where t,,maxft and ,=rmin(¢.

(3). It I g,15-i call SS(II) and RH(X( " )) := (d(1.n)) else

RH(X(n)) RH(X&)-') RH(X 1-) (4.4.1)

where - '[41 .(2 .  .

Based on the bounds (4.3.1) and (4.2.2), we are going to show by induction

that

there exist somre constants gj and E(). where j = 1.2.... sich that for any

n and XW" the relative error e-' in RH(X,,)) is aluays bounded by Cn-1).

PMof.
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Step 0. When n=1, AO(X)=RH(X)=expQ,). Therefore t(o) can be set

equal to e (we assume function exp can be evaluated accurately. i.e. I

Step 1. When n=2, assume < J2. then G(X)=(Q2 -4). Let t5= 2 -41 . To

compute RH(X), SR yields (cf. 4.2.2)

It gI :4e+(1+4/5 ). (O) 9(5+4/6)z (4.4.2)

and SS yields (cf. 4.3. 1)

Ie ' <[2CO+2Cjlog/+C2r-Y2]-. (4.4.3)

Since - =m(-07) < max(,50.7) (4.4.3) becomes

el I <[2Co+2Cjlog(max(i5O.7))+C2(max('i0.7)) -2]-. (4.4.4)

Notice that the bound in (4.4.2) is monotonic decreasing in d and the one in

(4.4.4) is monotonic non-decreasing so they have only one intersection. Let it

occur at a=g1. It means that el will always be bounded by c(l) M (5+4/g I)c if

one computes RH(X) by SS when G(X) < g, and by SR (i.e.. by (4.4.1)) other-

wise.

Step 2. Assume that for 1 < n the assertion is true, i.e.. e-1 in RH(XI"( )

is bounded by some constant r(1-1) for any X=X(n). Consider X=X("  . L-!t o

denote I t,-4,J where G(X(f 0)=(.4). To compute RH(X). SR. or equation

(4.4. 1) yields

Ivjnl:!94 +(l+2n /i ),, -i (4.4.5)

and SS yields

c"l <[nCo+nClog(max(.0.7)) - C2(max(3, 0.7))-2]. . (4.4.6)

Again the bound in (4.4.5) is monotonic decreasing on a3 and (4.4.6) is mono-

tonic non-decreasing on 13, so they have only one intersection and let it

occurs at % = I . Therefore c' will always be bounded by

4e+(1+2n/gi).e(" -1) if one computes RH(X) by SS when J C,-fI < g,
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and by (4.4. 1) otherwise.

By induction, our assertion is true for all n. -

One can generate those gj. eU) recursively by equating the bounds in

(4.4.5) and (4.4.6) and solve it for j=1.2.... with the initial value (O)=e :

4c +(I+2j/, )-e(i-1) = [jCo+j C~log(rmax(-J,0.7)) Ca(max(.0.7))-2]- (4.4.7a)

with

C - [jc+jClog(max(-6.O.7))+ (max(i,.O))-2] e. (4.4.7b)

For =2-4. We compute some of the gj and cU) according to (4.4.7) and list

them in Table (4.4.8). Therefore we have shown

Relative error bound in RH(-"M)). When ,s=2-2 4, we have

where e-1 is the relative error of A'-' and the value of gj and er') are given

in Table (4.4.8).

--f ... -- _ . . _ ..... , _. ..... , ,.* - 4_ g . -+,.. :a . -x. ::.€ ~ - m
. . . . .. . . . . e 

a
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Error bound digits lost

j (~1g 1 0 (-

1 0.02 0. 105e+03 2.02
2 2.100 0.310e+03 2.49
3 4.846 0.697e+03 2.84
4 9.227 0.131e+04 3.12
5 15.41 0.216e+04 3.33

6 23.48 0.326e+04 3.51
7 33.50 0.463e+04 3.67
8 45.48 0.626e+04 3.80
9 59.46 0.816e+04 3.91
10 75.42 0. 103e+05 4.01

20 345.4 0.469e+05 4.67
40 1487. 0.201e+06 5.30
60 3430. 0.462e+06 5.67
80 6173. 0.832e+06 5.92
100 9716. 0. 131e+07 6.12

Table (4.4.8). Single precision decision criteria (=2 - 24)

and error bounds for the hybrid algorithm.

Remark 1. The asymtoptic value of g, is i 2 + 0(i), which can be seen form
the equation ) = C.g. and C2k +,=(1+ 2k ).C2g. obtained by omitting

C~gk4.1=(+-)Cg

the lower order terms in (4.4.7). One can verify by induction that

k 2-3k < g <k2 and consequently the error bound e(5) = (CL k2 + 0(k))e.

Remark 2. Although the error bounds in Table (4.4.8) are not ridiculous.

they are quite pessimistic. Also the value of gj in the above table is too large

to be useful. For example, when n=20, 920= 3 4 5 .4 and it means that A' 0 is

computed by (A1 - A1 9)/ (t2,-C1) only if C21-Cl > 345.4! Experience shows

that as long as - > 25 or 26, SR always yields satisfactory answers.

Since SR is much faster that SS, one prefers SR to SS whenever SR yields

satisfactory results. So we would like a set of values for gj and 51j) which is
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more realistic. After numerous numerical experiments Nye obtained the fol-

lowing experimental formula for gi and ei) (for -ny precision e).

Experimental formula.

gi (1-i- lj
10 (4.4.9)

E(j) = 5gj..

The practical value for gj is much smaller that the one in Table (4.4.5) (it is

like j+O.ljlnj VS. j2 ). For comparison, take ]=40, (4.4.9) yields 54.76 wNhile

(4.4.8) yields 1487! We ran our SH (with gj in (4.4.9)) on a Z that has 20 data

points distributed irregularity from -27 to 25. The results are summarized in

Table (4.4. 10). Te last column "digit lost" is log 10(relative error).

Correct SH L SN- digits
____ to 7 digits IH___ __- _ lost

1 -27.0 0. 1879529e-11 0. 1879529e-I 1 0.
2 -26.0 0.3229560e-11 0.3229560e-1l 0.
3 -15.0 0.2317134e-08 0.2317134e-08 0.09
4 -14.0 0.3012897e-03 0.3012897e-08 0.
5 -12.0 0.2953682e-03 0.2983632e-08 0.

6 -10.0 0.224840le-08 0.2246401Le-08 0.
7 -8.0 0. 1353474e-08 0. 1353474e-03 0.50
8 -7.9 0.4257157e-09 0.4257158e-09 0.56
9 -7.8 0.9465834e-10 0.9465836e-10 0.61

10 -2.7 0.4272183e-10 0.4272196e-10 0.96

11 1.0 0.2364207e-10 0 2364209e-10 1.10
12 1.1 0.6378568e-11 0.6378574e-11 1.22
13 1.2 0. 120880 le-1 1 .1208502e-1 1 1.33
14 1.3 0.1806541e-12 0.1806544e-12 1.45
15 3.0 0.270659 le-13 0.2706596e-13 1.49

16 7.0 0.5415335e-14 0.5415346e-14 1.53
17 9.0 0. 1022545e- 14 0. 1022547e-14 1.58
18 13.0 0.2453144e-15 0.245315le-15 1.65
19 24.0 0.3804000e-15 0.3803999e-15 0.72
20 25.0 0. 1456325e- 15 0. 1456325e-15 0.54

Table (4.4.10). Test example for Simple Hybrid Method.
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5. Complex Exponential divided Difference

5.1. Can we have high relative accuracy?

As we have seen in section 4, the real exponential divided differences can be

computed with high relative accuracy. What makes it possible is that

A7*(X)=Aj"(X)exp is positive for real X. This property fails for complex data Z.

for Ajk(Z) can take on any complex value. However. one can still say some-

thing about the error in A j(Z). In order to do that some extra notation is

needed. Let X and Y be the real and imaginary part of Z, i.e., if

Z=[ .... .j then X=[e ,t 2 .... C,] and Y=[7i71,72 ...... 7-] so that

¢A=t+inb for k=1.2.....n. Also let Aj}(V) denotes the exponential divided

differences on the abscissae WY. Our treatment of error in the complex case

is based on the following inequality.

Lemma. With the notation given above

IA(Z) I :A: '(x) (5.1.1)

Proof. Use the Hermrite-Gennochi expression (1.3.1) for Ajk(Z) and note that

jIexp[¢ + (¢,, -¢ ) +.. ]I= exp[ .Q+(-f)vi+...- .

Inequality (5.1.1) enables us to bound the error in the computed A (37) in

terms of Ak(X). The bounds are similar to those in section 4. We summarize

the results below, and leave the details to appendix B. Let r be the unit

roundoff and e. be the absolute error of Ak(Z). i.e., fIL(A(Z))=AP(Z)+et.

Define rp. the pseudo relative error in &6(Z), to be ekek/lA(X).

(1). Error growth of SR (Standard Recurrence). Suppose that Ah(Z) is

computed by SR, and also Re( j+A) _Re() for i-.j <i+k. Then, to first order

538 _
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in e. the pseudo relative error el satisfies:

I r*j -,4e+[l+F 2k m-iIrkiz]'maxiI E.? I -. " (5.1.2)

Proof. See appendix B..

(2). Error bounds of SS (Scalig and Squaring). Let the radius 7 be

deftned as in §2.4. Suppose that A(Z) is computed by SS(11). Then to first

order in r we have

Error bound

i I [cRk +Clk in(max(y.O.7))+C2.max(7.0.7)-.2]-r (5.1.3)
where C, i=0, 1,2 take the same values as in (4.3.2).

Proof. See appendix B, Corollary (B.6).o

The above bounds for complex abscissae Z are similar to those for the

real one in section 4, except that the meaning of the errcr v. is different:

here is the error in A?'(Z) relative to Ai(X). The same analysis as in sec-

tion 4.4 shows that the hybrid methods yield small r like O(k 2 )c. Le.. yields

A (Z) with small absolute error cormpa'ed to 0 (X). provided that the deci-

sion function G satisfies:

(1) G(Z)=( . ,) and -y4 -C1 l 7

(2) Re(i ) L Re() for any 'eZ.

It leads to the definition (3.3.4) for G, i.e.. G(Z)a(, ,,) such that

J=- I =maxIel-C I where A wj¢ieZ:Re(j)=maxRe( j) I
ficz

For this G. we always have 2G(Z) > 7 (Z) (usually G(Z)>-y(Z) except in some

rare situations). Therefore. with the above G, we have
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(3). Error bound of RHX). There exist constants gj for the RH and con-

stants r(J), j=1,2,... such that for any X-X (' ),

Proof. The proof is similar to the one in §4.4.•

If one assumes G(Z)>-y, then when c=2 -2 4 , the values of gi would be the same

as those in Table (4.4.4).

Remark 1. Let p=A,(X)/ I A-(Z) I and call it the difficulty measure of A(Z).

The relative error of AN(Z) is then equal to p*r. The question (whether we

can compute A1 (Z) with high relative accuracy) thus becomes whether p is

close to its lower bound 1. In the next section we will give an upper bound on

p when the imaginary parts Y are close to zero as shown in the next section.

The upper bound is == in the general case.

Remark 2. In the implementation of the hybrid methods one can avoid using

RH in the real case because one can always order the data so as to be

nested. In the complex case there may not exist such an ordering and RH

seems unavoidable in order to secure good relative accuracy in the most

general case (e.g. 500 points on a circle of radius 500 in the complex plane).

However, in section 5.3 we will show how to salvage SH when the data are

complex.
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5.2. Computational Difficulty

Let X, Y and Z be as deftned in 5.1.

Mean value representation for Ajk(Z). There exist real /I.v with

min r &,pv:9 max7. such that

A4(Z) =JI(X)(cos(ju) + isin(u)). (5.2)

Proof. From the identity exp(.+i-i)=exp( )(cos(7)+isin(I)) and the

Herrri.e-Gennochi (1.3.1) again, we have

I " I'-L
A(Z) +1 ffh f
+ i f .. f exp~j +... +(t,44. _tI ]d ... ivz

0a 0

Since exp is positive on real values. equati.on (5.2.1) follows from the integral

mean value theorem. •

When the imaginary parts Y are close to zero. say maxI v < IF.
3

(5.Z 1) gives a lower bound for I AJ4(Z) 1:

Lower bound of 4(Z)

1A4(Z)i cos(i).4(X) > 0.. (5.2.2)

In general, there is no positive lower bound, as can be seen from the example

A((0.2ffi])= o.

(Z) can be computed accurately if the difficulty p (cf. remark I in

§5.1) is close to 1 (notice that A'(X) declines like 1/c! . cf. (1.3.2)). When

p >> 1. it is difficult to obtain A (Z) with high relative accuracy. This

difficulty is intrinsic with our methods of computation. One way to overcome

t We conijecture that if the imaginary parts of the data are restricted in (0.2,). then all di-
vided dilfferences at will never be zero. rt can be proved for A:= 1; but we do not know any proof
when k bigger than 1.
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it is to increase the precision of the arithmetic operations and the variables.

Another possible approach is to find special formulae which build up A(Z)

from even tinier quantities, e.g., FDD, the first order divided difference for

exp in §2.2. Unfortunately for n>2 we do not know if any such formulae exist.

We define p=p(Z)-An-i(X)/An-(Z)I and call it the difficulty of Z (for

exp). The bigger the value of p the more difficult it is to compute A (Z) accu-

rately. From (5.2.2), Z is not difficult when Ilmag(j) 0O.45r, i= 1. n,

for then p ! 6.41. Examples of difficult Z are : those abscissae close to

[O,2ni,4ni,. 2kmi] (for all divided differences on this abscissae are equal

to zero, i.e., p=-). Another example is Z=[O,i, 2.04254+7.97730i]. We corn-

puted A(Z) with approximately 7 decimal precision and give the correspond-

ing p in the following table. Notice that SS lost 6 digits in the last divided

difference, which has difficulty p A 108.

Correct values SS I
to 3 digits

A 0.841 0.460 (0.841 0.460 1.05
,A? (-0.144e-06 -0.73 le-07) (-0.16 1e-06 -0.800e-07) 7.14e06

Table 5.2.3. Divided diferences on Z=[O.i, 2.04254+7.97730].

Remark 1. In the application of matrix exponential, the need for high rela-

tive accuracy in A(Z) decreases with jAg(Z)j. When it is satisfactory to com-

pare the error in I A(Z) I with Ag.(y) then the difficulty evaporates.

Remark 2. In general the difficulty of Z increases with the spread of the

imaginary parts. For example,

-A ([Re(t 1),Re( '2z) ]) = It- [ ]I e )-e Z)P(";';""¢.2]))= I A([¢,,¢])1 IRe(¢,-¢ 2)1 Ie(, - ,I
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So the bigger the difference of the imaginary parts the larger is the

difficulty. As a point of interest we also compute the difficulty on circles with

various radii and number of points. The results are summarized in the follow-

ing table. Each entry is the difficulty of abscissae distributed uniformly on a

circle with radius 7.

-y:=5 I,7=15 y=20 2:=25

n=5 2.2 3.1 3.2 3.2 3.2
n=10 1.7 7.9 28.9 35.9 45.1
n=15 1.5 4.5 25.0 173.6 301.7
n=20 1.3 I 3.2 12.6 77.5 651.8.

Table 5.2.4. DifficultY of the highest divided difference on circle.

5.3. Ordering and Matrix Argument Reduction

A nested ordering may not exist for general complex data Z. However, if the

imaginary parts of the daLa are bounded by a small number, then one can

order the data according to their real parts and get an almost nested order-

Ing. In this section which is based on the period 2ri of exp, we indicate a way

to transform the data to values that have bounded imaginary parts.

Definition of The Reduction Function Mod(A)

Since exp has period 27ir the strip -r<Imag(')-rr is representative. Let us

define the argument reduction function for exp as follow-

Mod()=V-2knri if (2k-)ir < Imag(&) -& (2k+I1) ni.

We have exp()=exp(Mod(')). Now we are going to extend the function Mod to

matrices. Let J be the Jordan normal form of A, i.e. A=P-1 JP. and
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J=diagf(Jf ..... J) where J. is the Jordan block with diagonal equal to

eigenvalue \,m of A. Let k, be the integer such that

(2k -1)r. < Imag(,,) -g(2k +1)i.

Define

(1) Mod(Jm)=_J,, -2km, 7Ti1

(2) Mod(J)= diag(Mod(Ji,).....Mod(J%));

(3) Mod(A)-P-Mod(J)P.

It is not difficult to prove that exp(A)=exp(Mod(A)) according to (1). (2)

and (3). Thus Mod generalizes argument reduction to matrices and yields a

matrix that has eigenvalues with bounded imaginary parts.

As we have mentioned in the introduction, the application behind the

computation of Ailexp is matrix exponentials. If one applies the matrix argu-

ment reduction before computing the exponential, then all the eigenvalues of

the matrix would have bounded imaginary parts, thus solving the ordering

problem in the computation of the divided differences.

Remark 1. There is another way to reduce the imaginary parts of the data:

since Aexp=exp(Z.), we may apply argument reduction directly on Z, and

compute exp(Mod(Z)). However, the bidiagonal structure of Z, will be des-

troyed by the reduction and therefore some modifications of the algorithm

TS are needed. The work for the whole computation increases significantly.

Remark 2. For the computation of Mod(A), there is a stable method which

avoids using the Jordan decomposition of a matrix. When A is triangular the

work needed is approximately n3/3 operations which is quite practical. We

will give an algorithm for argument reduction in another paper.

i
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5.4. Conclusion: SH for data with restricted imaginary parts

Although RH gives the divided differences with guaranteed accuracy, it is

impractical to implement it unless the order of the divided differences is

very small like 3 or 4. because the number of operations grows like 2". Sec-

tion 5.3 shows that (assuming one has the matrix function Mod(A)) one can

consider matrices with eigenvalues close to the real line. so there is no loss

of generality in considering Z with imaginary parts bounded by ir. There are

two advantages to small imaginary parts. The first is that we can order the p
abscissae according to their real parts and obtain an almost nested ordering

(according to the G defined in section 5.1). Thus one can apply SH (Simple

Hybric. method) instead of RH (Recursive Hybrid function). The second is

that the backfilling step in SS is stable, which implies that one can replace

SS(l1) by SS with only slight sacrifice on accuracy. But the trade off is

significant, since SS takes 0(n 2 ) operations and requires only a few vectors

for storage while SS(II) take O(n3) and requires a matrix storage. We con-

clude his section by proposing the following.

Computation of A(Z). Given 2' with Re(Z) in increasing order and

Ilmag(Z) sir. Use algorithm SH with the following G to compute 6(Z).

Decision Function G for SH on Z The function G on Z= ..... ] is

defined fn be G(Z)=( ,,C<)t, and the decision is. for i<j.

Ct, j belong to the same cluster if Re j<gj-i

where the values of I= 1.2.... can be those in (4.4.9)..

Numerical Results. We ran the SH algorithm on Z that has the same real

parts as in (4.4.11) but with the imaginary parts = t i. The results are

t sch Z and 0, one can show that 2(G(Z)+r) > 7(Z).
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summarized in the following table.

Correct values digits
to 7 digits S_ _lo__I

I -27.0+lri (-0.1879529d-I 1 -0.1643136d-18) (-0.1879529e- 1 -0.1643136e-18) 0.
2 -26.0-TI! (-0.7978484d- 13 -0.5013023d-12) (-0.797483e-13 -0.5013023e- 12) 0.
3 -15.0+rii (-0.1747305d-08 0.9981036d-09) (-0.1747305e-08 0.9981036e-09) 0.
4 -14.0-TL (0.415510ld-09 -0.4757347d-09) (0.4155102e-09 -0.4757347e-09) 0.
5 -12.0+ it (0.1814275d-09 0.1323147d-08) (0.1814274e-09 0.1323147e-08) 0.43
6 -10-rn (0.7591439d-09 -0.5204460d-09) (0.7591440e-09 -0.5204460e-09) 0.32
7 -8.0+iri (0.4204520d-09 0.5119519d-09) (0.4204520e-09 0.5119519e-09) 0.
8 -7.9-nir (0.2091884d-09 -0.3885012d-10) (0.2091884e-09 -0.3885013e-10) 0.20
9 -7.8+ni (0.4721783d-10 0.24166Z7d-10) (0.4721784e-10 0.2416627e-10) 0.48
10 -2.7-T' (0.2229288d-10 -0.1255209d-10) (0.2229289e-10 -0.1255209e-10) 0.90
11 1.0+ITi (0.1147709d-10 0.8703504d-11) (0.1147709e-10 0.8703510e-11) 0.99
12 I.I-ini (0.3820952d-11 -0.7453152d-12) (0.3820956e-11 -0.7453158e-12) 1.18
13 1.2+l1i (0.7360573d-12 0.2693091d-12) (0.7360580e-12 0.2693094e-12) 1.25
14 1.3-ti (0.1204098d-12 -0.1441720d-13) (0. 1204099e- 12 -0.1441722e-13) 1.29
15 3.0+iri (0.1798853d-13 0.5672050d-14) (0.1798856e-13 0.5672058e-14) 1.42
16 7.0-ni (0.3734263d- 14 -0.8906243d-15) (0.3734269e-14 -0.8906257e- 15) 1.43
17 9.0+ni (0.7041432d-15 0.2104887d-15) (0.7041446e-25 0.2104891e-15) 1.51
18 13.0-ni (0.1705491d-15-0.5255464d-16) (0. 1?05495e-15 -0.5255475e- 16) 1.51
19 24.0+ i (0.1783471d-15 0.2243819d-15) (0.1783471e-15 0.2243819e-15) 0.27
20 25.0-ni I (0.9540051d- 16 -0.1855942d- 16) (0.9540053e-1 6 -0.1855942e- 16) 0.60

Table (5.4.1). Test example for SH on complex data, A-'(Z)exp.
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6. Application to Computing Matrix Exponentials

6. 1. Representation of f(A) by the Newton interpolating polynomial

Let A be nxn and let f be any scalar function with at least n continuous

derivatives at the eigenvalues .. of A. Associated with f is the unique

polynomial of degree n-I which interpolates f at the . A convenient

representation of this polynomial was given by Newton.
-I-

._I(t ) =f (6) + Aft (t-€)
k=l Jgt

Here A14f denotes the k -th order divided difference of f at the abscissae

A fundamental result in matrix theory (see [2]) is that

S(A)=p,A(8.1.)

That is,

Newton interpolating polynomial o f (A).

f(A) = Alef'I + Atf "1(A- jl). (6.1.2)

In our applications, A is in triangular form. Therefore the eigenvalues

are just the diagonal elements of the matrix and the matrix products can be

formed efficiently.

6.2. Matrix exponentials

Let A be triangular. Since exp is periodic on the imaginary axis with period

21r, we can use argument reduction in matrix form (cf. section 5.4) on A.

replace A by another triangular A such that exp(A)=exp(A') and

I mag(a'j.j) IIin. There is no loss of generality in assuming that argument
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reduction has been done and therefore the imaginary parts of the eigen-

values of A are bounded. Now we can apply SH on the eigenvalues to obtain

the divided differences and compute exp(A) by (6.1.2).
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Appendix A

Algorithm & Error Analysis for computing the first row

of exp (Z.) by Taylor series

(1). Algorithm

For later reference, we consider here a more general matrix Z. Let

d(l)...,d(n) be the first row of Fzexp(Z,)zIfZ,+Z/2!+..., where

¢2 z2

LetPo = I and Pk =ZIk! for k1l. An obvious way to compute F is:

S0) Set F1,. k=1 and PG=I.
1) If F has converged, stop.
2) Evaluate PA = P-1' Zn /-.
3) Update F andk : k- k k+1 and F ,- F+Pk, go back to (1).

Here step (2) implies at k-th loop,

1, . ) ._. (A.1)

where Pk(ij) denotes the i.j-th element of matrix Pt. Notice also that

Pb(l.i)=O when kii-2 and P%_(Li)= = for 2?-i-n, for Zk is a band(i-i)

matrix

--------------------.- tS
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j=2

Zl = .I

Zk1- 4.1$--n -k +

with bandwidth k I. Hence, we have

= EPA:(1,i) , lk(1,i)

Se t s (i) =Pk + I (1.i), we have

d= I= P' s.(1) (i) 1

kkkO

and from eq.(A. 1),

(a) s 0(i)==-' for 1-gin.
Pk_,(1,1)

(b) sk(l =eaP P)= IN. 1)
k, (A3)

kt--_(I) for k>o,
(C) S t, (i)Q -- (1.'/)

_ 1i-i [¢.sh_(i)+a _lsk(i-t)I for i=2.3 ...n and= =1.2.....

Equations (A.3) suggest the algorithm TS in section 2.2 for d(I).....d(n).

where aj=l forj=1,2...,.rL TS(II) is just a simple generalization..
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(11). Error analysis

Here we develop error bounds on the computation of d(i) via equations (A.2)

and (A.3) (with a,=1. j= .... n. For simplicity el, ,", I j e(unit roundoff)

will denote the rounding errors introduced by basic arithmetic operation

(+,-,,/). e.g. fl ((=+b )*c )=(l+)(l+e 2)(a +b )*c etc.. Defitne the absolute

error gt() in s$(i) by

ek( -- f--S;W S A 4

From (A.2). dW() is com. uted via the truncated series s'(L) for some 1.
h =0

Therefore for 1£i:n and eo=O.

fL(d(i)-d(i)=L(f1 f(S())) - Wsk(i)
k=0 lO

k-- =1 jk /:0

(s([+e :()) + ±--~ I)(i j :(1k .! s:0 )

That is,

L=1+1 A no j jmAZ L.kI =-o J=u--ax lk I
_ -- I + II + III.

In order to bound I. II and II. we need the following two lemmas. Let

7-naXJI .

Lemma 2. IFor Li..tn, l (C.)the.

L.emma 2. If 12(1 +n -1)2c<l, then

I,. Y, 1: ( + ) " :--.,"k! .
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Ye postpone the proofs of the lemma 1 and 2. As a consequence of the lem-

mas, we have the following bounds:

Error bound on d(i). Pick I large enough so that I I is less than -. For

example, I = 1 + max ([67] , [-1og0 ] ) would be sufficient. Here [z] is the

greatest integer r z. Assume the condition in lemma 2 holds, and also

assume 3(7+-n-l)lC < 1. then

11Z d ())-d(i)l <3(i T) Z ] ( -)!.(A.5)

Proof. Since k!>v2/T(k)M,

! .e7 < e.

Moreover I was chosen so that I >57 and 2-1 <e, so Il < 6 e7. For II.

notice that[ fI (i+r)-i] < (Z-k+1) < (1 +i). so

111 -< . _-, )(,-+ ). r .,0( j) < ( 1 + ) r e -0( ).
't=0 k!

Finally. apply lemma 2, II is bounded by

111115 t 3(k +i-l)z-s(i).(l+jr)

<3 2 k -ZL~ + 3(i-1) 7k ]( 1.)s,

:9[3(-y+i- 1) +3L (-/+i- 1) c]e elf so(i )

Therefore, by the assumption 3(7+rn -1)1 v < 2,

lij + l n+ llJ [1+3/+3i -3+1 + I+3(y+i-1)/c] e7.sc(i).
< [3(y+i)+1]v'e?-So(i).,
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Our bound (A.5) suggests that if d(i)---'-lexp << e// (i-1)! then TS will

not yield a small relative error. For later reference, we derive the foltowing

corollary. Let X=Re(Z) (cf. appendix B for notations), we have

Corolary. If Aexp is computed by TS. then to first order in r

f l(& -'( ~x)-A -'. x I < 3(i+7)+-]e-' 2.  (A.8)

Proof. Since X is real, (1.4.1) implies Ai- 1(X)ex? L- e- Since

sC(i) - )! equation (A.5) yields (A.5).

Remark. The bound (A.5) is pessimistic. especially when 7 is smalL For

example, when 7<1. the error et(i) in sg(i) would decrease ripidly with k

and therefore be far smaller than the rounding error ;nade in adding sk(i) to

d(i). In general, Ir is much larger than I and II and we always have

fl(d(i)) - d(i) II = s.(i)-[ jij (i rj)-i]
A; O jmxj.k

k=O

Since lc,1+e 2+...+e)jl grows like ,5 . it is conceivable that the absolute

error of the divided differences will be bounded in magnitude from C/ (i-1)!

tovT.e?/(i-l)!. We therefore have

An estimated bound of the error in d(i).

If (d(i))-d (i) '(i-)! ( - .1) . (A.7)

Various numerical results confirm that both the upper and lower bounds in

(A.?) are reasonable. Examples can be constructed so that the errors grow

with y and are about .01 to .1 of the upper bound.
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Proof of lemracz 1.

Since so(i)-=I/(i-l)! and sk(l)=/k!, lemma I is true for k=O.i=l,2....

and i=1,k1.,..... Assume that the lemma is true for sk(i-1) and sk._(i).

then according to (c) of (A.3) and so(i-1)=(i-1)sc(i),

:" 2:L, sc(i) • .

By induction on i-k, i>1, k>0. lemma 1 holds for all ik..

The bound above is best possible. l

Proof of lemma 2

First, let us establish the recurrence relation among ek(i)'s according
1

to equations (A.3). Consider (a) of (A.3). if s 0 (i)= I is computed by

so(l)= 1. sO(i)=sO i-1)/(i-1) for i>1. then

f"s 0 i-))_s(i-)

fl(s(i-i))

=(1+ZI i--i SO
=rjs°(i)+(l+VI) --

Hence

(a)'. eo(l)=O. leG(t-e'sO(i)+(1+c)I(i-) for i>1.
(i-i) b.

Next we consider equation (b) in (A.3). We have
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ek(1LCk1))(=ft(1+-sk.(1) - st(i)

=[(i-iC 1)(ii-e2)-1]Sk(1) + 19)'VL ebj1

By lemma 1. we get

(b). Iu(C)j I-[(1+z,)2-] s(i)+(1+v)27- I -(1) for k !.

Finally. (c) of (A.3) implies

k+-L-1

9k-10 -Si -1

( + (1+C)(+2

Therefore, for i >1,k;!:1.

(1-j~e)2

Now we prove lemma 2a It is not dificult to show by induction that

(i). equation (a)' implies Ie~.1(~)'ls~)and

(ii). equation (b)' implies I et(1) I s((l+) 2 A -1]2 1s~).

So Lemma 2 holds fr k=O,ia~1 and i=1.kz-l-. Let kal and i>1. Assume

lemma 2 holds for ejb(-i) and e'k,(i). From (c)',
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42- k! k-s 0 (i

: -i-+-k 1-4s +3(1-i4e)(k -di-2)]z-LOi

=[3(k+i-1)+12(k+i-1)c - -iTI ]C2LsO(i).

Therefore, when 12(1 +n -i) 2 es 1.

I eb (i) 1--3(k i-i -i)z - se)

By induction on i+k. i>1.kz!i, lemma 2 holds for all i~k.u
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Appendix B

The error analysis of SS and SR

Recall the definition of the following the notations (cf. section 5). X and Y

denote the real and imaginary parts of Z. Le., Z=X+iY (recall X= - .- ].

Z=[--C,-'] and Y=["-,"]). The pseudo relafte error in 9(Z) is

'WOWe will suppress Z in c(Z) if there no risk of con-

fusion. c$ denotes the roundoff error introduce by basic arithmetic opera-

tions (whether complex or real). e.g. fL(a(b+c))=(1+a,)(1+tz)a(b+c) etc..

We always have stj r..

(I). SR (Standard Recurrence): error growth of one step SR.

If A ,(Z) is computed by (z) if for

igj <. +k, then. provided that

+it++

¢,,¢I]'max ' I s r-j .1gII 1+3e+,:: <1t

the pseudo relative error C,--t (Z) satisfes:

2k ' a lI£'%'I 'II (B. 1)

Proo/. We have

fL(A/(Z)) (5 ( (A, -(z)) =
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(=+EJ)(l+C2)( +C3)A1+ Z)+Ci;l (+k - ) + Az +(X). -]

= (1+C,)(1+C 2)(l+eC).[H(z)+*;, 1 .A(x) 1+ + 1: (XLL* - e - .
Therefore

lfl(A**(Z))- (z)j4(1+E)3 -1] • I 1 k(z)f +

+ A -l(X)].max4 leillI[ -le i

Since by (4.1.8) Ai -A(X) -k and by (5.1.2) IA(Z)_ A1'(X), the bound follows

by a direct estimate on the above equation..

Remark. The requirement Re(¢i+j)LRe(¢j) for ic-j <i+k is necessary only

when the imaginary parts of the data are close together. It is used to show

O ,(x). N.

When the imaginary parts are not clustered together, one can replace the

condition by a more general one. Let x=-diam([Cj ... + +]) and

z -diam([¢j ... ]), then with (4.1.6) one can show that

implies the inequality ().

(I1). SS (Scaling.and Squaring): error bound of SS

We only do the analysis of SS(II). Recall y=y(Z)-maxIj-irj where

i}=.(E,)/n. In SS(lI) the number of squaring K is chosen such that
i.
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2 -K7 r 0.7. Let I denote the number of terms need in TS. Provided that

((3.e 1-4 +K-I)k +2K-1.(2+e1-4(a 1+))-2] 2C ! 0.5. we have

Error bound of SS(11)

ScI [(3 e!"+K)k+2K'(2+e (2.1+1))-2]c (B.2)

Proof. There are two sources of error in SS(ll): the initial error in TS(JI)

(Taylor Series algorithm (1I)) and the error introduced by squarings. Since

2--'r70.7, we have from equation (A.6)

I 1 (2-KZ) I -[3k +(2. 1+,)]z.e 14 (.3)

(B.3) can be written as ]s4I:(Cj°)k+CjO))r, where Cf?)=3.e 1"4 and

CJO)=(2.1+e).e' 4. Suppose Ilc,4I(Cjki+C2 )e, we now investigate how much

the error would change after one squaring. According to method SS (cf. 2.4).

we compute 1(2Z') in modified step 3 for some Z' by RA(Z') 2 R - '. Compare

the (i,i+k:-th elements of both sides we get

(2Z' . z).i') ).(B.4)
j =0

Thus, if multiplication by 21 can be computed exactly, we have

If1(A1(2z'))-g(2z')! -c III + I+ ,where

IIr 2h'[fL( A1(Z ' ) A L(' (Z)) -
,.  = I( Z)'tAZ(

From I A/(Z') I'4 (X') and If 1(Aj(Z'))) I= i(Z*) +.(Z')' (X') 1 :(1 + e{)AJ(X').

we have, following some standard error analysis, if

(C, k+c)(+[Ck+C2))t < 0.5.

then
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J=0

: (k + 1. 5)v2;
j=O

tr (k + 1. 5) e.AA(2X').

Similarly, when (Clk + C2) 2 v<0.5, we have

1111a 4 z'. ~ x) i.Cz' ,P;Z( 2z'.t4'.,-1(x') + ,tCZ)'4:CZ'). A(x').At;f(X')

istCi + C+C[k -j)+ C2 +(Clk +CZ)Z]C2 e N(X').q--l(X

g (Clk +2Cz+0.5)c-At(x).

Thus,

,,,(az f II(At (2Z')) -A, (2Z')
o,(2Z)-:r

So. if we update Cf' -C) + 1 and CIO - 2CJ) +2 . we have

£l(2-(K-)Z) : [Cf Ok + CJ) ]c. It is now obvious that we can repeat the above

argument and obtain, after K squaring, the following bound:

,J(Z) :f [ Cjink + CJ 1 (B.5)

where

CfK) = Cf0 ) + K and

cil = 2 (CJ0 ) + 2) - 2

Since the assumption before (B.2) is (C1K-1)k +CJr-i)) 2 . r < 0 .5. which obviously

implies

(Cpk+Cif))(2+4[CP'k+Ci')])s <0.5 and
(CY)k+C ')) 2 0.5 for any O'j!<K-1.

Thus justifying (B.5). and (B.2) follows (B.5).
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Corollary.

I cz1 t[Cok + Ck kn(max(y.o.7))+C-max(y.0.7)-2]. (B.6)

where
Cc=3.e -- 1og2(0.35) u 13.68C, =1/ In(2) ;z 1.4427

C2 =(2+e .4 (2.1+1))/ 0.35, where It is chosen such that (0.7)I/j! r c.

Proof. When -:0.7, (B.6) follows from (A.6). When 7>0.7, we have

0 . 7 2-/ 7 >0 .3 5. hence

2K < 7/0.35

K < log 2y - logj.,(0.35)"

Equation (B.6) follows from (B.2).,

Remark. Bound (B.6) is quite pessimistic. We observe th!t the actual error is

approximately 0.01 times what (B.6) gives. The following are some numerical

examples. Consider Z that has n abscissae distributed umiformly on the real

axis from -7 to 7- We ran our SS algorithm on a Vax with c=2-2"4 on this exam-

ple with various n and 7-. The results are summarized in the following Labie:

the entries under (B.8) are the bounds (as a multiple of r) obtained from

equation (B.6) and those under SS is the maximum magnitude of the error in

the divided differences computed by SS (as a multiple of c).

t In particular when &=2- , L =9 and &==- 5 . A ie (cf. 12.3).
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n=10 n=20 n=30

SS (B.6) SS (B.6) sS (B6)

7=10 8.8 1500. 18. 1700. 27. 1800.

-=20 10. 2800. 36. 3000. 43. 3200.

/=30 23. 4200. 29. 4400. 60. 4600.

/y40 17. 5500. 63. 5700. 82. 5900.

y=50 64. 6900. 68. 7100. 76. 7300.

/=60 30. 8200. 31. 8400. 58. 8600.

Table R7. Error bound coefficients et/z of SS.

iI

I:
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